Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 31(1): 1-15, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579459

RESUMO

Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeostasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemotherapeutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autophagy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will open new possibilities for overcoming drug resistance and improving clinical outcomes.

2.
Biomol Ther (Seoul) ; 30(6): 616-624, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305295

RESUMO

Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has been suggested as a repositioning candidate for the treatment of brain tumors. However, the efficacy of MBZ needs further study to improve the beneficial effect on the survival of those patients. In this study, we explored a novel strategy to improve MBZ efficacy using a drug combination. When glioblastoma cells were treated with MBZ, cell proliferation was dose-dependently inhibited with an IC50 of less than 1 µM. MBZ treatment also inhibited glioblastoma cell migration with an IC50 of less than 3 µM in the Boyden chamber migration assay. MBZ induced G2-M cell cycle arrest in U87 and U373 cells within 24 h. Then, at 72 h of treatment, it mainly caused cell death in U87 cells with an increased sub-G1 fraction, whereas polyploidy was seen in U373 cells. However, MBZ treatment did not affect ERK1/2 activation stimulated by growth factors. The marked induction of autophagy by MBZ was observed, without any increased expression of autophagy-related genes ATG5/7 and Beclin 1. Co-treatment with MBZ and the autophagy inhibitor chloroquine (CQ) markedly enhanced the anti-proliferative effects of MBZ in the cells. Triple combination treatment with temozolomide (TMZ) (another autophagy inducer) further enhanced the anti-proliferative effect of MBZ and CQ. The combination of MBZ and CQ also showed an enhanced effect in TMZ-resistant glioblastoma cells. Therefore, we suggest that the modulation of protective autophagy could be an efficient strategy for enhancing the anti-tumor efficacy of MBZ in glioblastoma cells.

3.
FASEB J ; 34(8): 10228-10241, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543734

RESUMO

Peroxidasin (PXDN) has been reported to crosslink the C-terminal non-collagenous domains of collagen IV (Col IV) by forming covalent sulfilimine bond. Here, we explored the physiological role of PXDN and its mechanism of action in endothelial cell survival and growth. Silencing of PXDN using siRNAs decreased cell proliferation without increase of the number of detached cells and decreased cell viability under serum-starved condition with increased fragmented nuclei and caspase 3/7 activity. Conditioned medium (CM) containing wild-type PXDN restored the proliferation of PXDN-depleted cells, but CM containing mutant PXDN with deletion of either N-terminal extracellular matrix (ECM) motifs or peroxidase domain failed to restore PXDN function. Accordingly, anti-PXDN antibody [raised against IgC2 (3-4) subdomain within ECM motifs] and peroxidase inhibitor phloroglucinol prevented the rescue of the PXDN-depleted cells by PXDN-containing CM. PXDN depletion resulted in loss of sulfilimine crosslinks, and decreased dense fibrillar network assembly of not only Col IV, but also fibronectin and laminin like in Col IV knockdown. Exogenous PXDN-containing CM restored ECM assembly as well as proliferation of PXDN-depleted cells. Accordingly, purified recombinant PXDN protein restored the proliferation and ECM assembly, and prevented cell death of the PXDN-depleted cells. PXDN depletion also showed reduced growth factors-induced phosphorylation of FAK and ERK1/2. In addition, siPXDN-transfected cell-derived matrix failed to provide full ECM-mediated activation of FAK and ERK1/2. These results indicate that both the ECM motifs and peroxidase activity are essential for the cellular function of PXDN and that PXDN is crucial for ECM assembly for survival and growth signaling.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Iminas/farmacologia , Peroxidase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo IV/metabolismo , Células Endoteliais/metabolismo , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Laminina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peroxidases/metabolismo , Peroxidasina
4.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817535

RESUMO

Peroxidasin (PXDN) is a unique peroxidase containing extracellular matrix motifs and stabilizes collagen IV networks by forming sulfilimine crosslinks. PXDN gene knockout in Caenorhabditis elegans (C. elegans) and Drosophila results in the demise at the embryonic and larval stages. PXDN mutations lead to severe eye disorders, including microphthalmia, cataract, glaucoma, and anterior segment dysgenesis in humans and mice. To investigate how PXDN loss of function affects organ development, we generated Pxdn knockout mice by deletion of exon 1 and its 5' upstream sequences of the Pxdn gene using the CRISPR/Cas9 system. Loss of both PXDN expression and collagen IV sulfilimine cross-links was detected only in the homozygous mice, which showed completely or almost closed eyelids with small eyes, having no apparent external morphological defects in other organs. In histological analysis of eye tissues, the homozygous mice had extreme defects in eye development, including no eyeballs or drastically disorganized eye structures, whereas the heterozygous mice showed normal eye structure. Visual function tests also revealed no obvious functional abnormalities in the eyes between heterozygous mice and wild-type mice. Thus, these results suggest that PXDN activity is essential in eye development, and also indicate that a single allele of Pxdn gene is sufficient for eye-structure formation and normal visual function.


Assuntos
Anoftalmia , Olho/crescimento & desenvolvimento , Deleção de Genes , Peroxidases/deficiência , Animais , Anoftalmia/genética , Anoftalmia/metabolismo , Anoftalmia/patologia , Sistemas CRISPR-Cas , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Olho/patologia , Camundongos , Camundongos Knockout , Peroxidases/metabolismo , Visão Ocular/genética
5.
Biomol Ther (Seoul) ; 27(1): 117-125, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30642153

RESUMO

Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has recently been noted as a repositioning candidate for angiogenesis inhibition and cancer therapy. However, the definite anti-angiogenic mechanism of MBZ remains unclear. In this study, we explored the inhibitory mechanism of MBZ in endothelial cells (ECs) and developed a novel strategy to improve its anti-angiogenic therapy. Treatment of ECs with MBZ led to inhibition of EC proliferation in a dose-dependent manner in several culture conditions in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) or FBS, without selectivity of growth factors, although MBZ is known to inhibit VEGF receptor 2 kinase. Furthermore, MBZ inhibited EC migration and tube formation induced by either VEGF or bFGF. However, unexpectedly, treatment of MBZ did not affect FAK and ERK1/2 phosphorylation induced by these factors. Treatment with MBZ induced shrinking of ECs and caused G2-M arrest and apoptosis with an increased Sub-G1 fraction. In addition, increased levels of nuclear fragmentation, p53 expression, and active form of caspase 3 were observed. The marked induction of autophagy by MBZ was also noted. Interestingly, inhibition of autophagy through knocking down of Beclin1 or ATG5/7, or treatment with autophagy inhibitors such as 3-methyladenine and chloroquine resulted in marked enhancement of anti-proliferative and pro-apoptotic effects of MBZ in ECs. Consequently, we suggest that MBZ induces autophagy in ECs and that protective autophagy can be a novel target for enhancing the anti-angiogenic efficacy of MBZ in cancer treatment.

6.
Stem Cells ; 37(1): 77-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281870

RESUMO

Mesenchymal stromal/stem cells (MSCs) have been developed as a promising source for cell-based therapies of ischemic disease. However, there are some hurdles in their clinical application such as poor cell engraftment and inconsistent stem cell potency. In this study, we sought to find biomarkers for predicting potency of MSCs for proangiogenic therapy to improve their beneficial effects. Large variations were observed in proangiogenic factor secretion profiles of conditioned media derived from nine different donor-derived Wharton's jelly (WJ)-derived MSCs and 8 factors among 55 angiogenesis-related factors were secreted at considerable levels. Two distinct WJ-MSCs that had the lowest or the highest secretion of these eight factors showed corresponding proangiogenic activities in in vitro angiogenesis assays. When four additional different donor-derived WJ-MSCs were further examined, proangiogenic activities in migration and tube formation of endothelial cells and in in vivo Matrigel plug assay were highly consistent with secretion levels of four major factors (angiogenin, interleukin-8, monocyte chemoattractant protein-1, and vascular endothelial growth factor). Such correlation was also observed in vascular regenerative effect in a mouse hind limb ischemia model. Blocking of these four factors by neutralizing antibodies or knockdown of them by siRNA treatment resulted in significant inhibition of proangiogenic activities of not only WJ-MSCs, but also bone marrow-derived MSCs. These results suggest that these four factors may represent efficient biomarkers for predicting vascular regenerative efficacy of MSCs. Stem Cells 2019;37:77-88.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/genética , Comunicação Parácrina/genética , Animais , Diferenciação Celular , Humanos , Masculino , Camundongos
7.
Biochem Biophys Res Commun ; 501(4): 941-947, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29772235

RESUMO

Mesenchymal stromal/stem cells (MSCs) have been promising source for regenerative cell therapy in ischemic diseases. To improve efficacy of MSC therapy, various priming methods have been developed, and hypoxic priming has been reported to enhance therapeutic efficacy of MSCs by increasing secretion level of growth factors and cytokines. Recently, it has been reported that bone marrow MSCs primed with hypoxic condition show an increase of autophagy. Here, we addressed whether proangiogenic activity increased by hypoxic condition is associated with autophagy. Wharton's jelly derived MSCs primed with hypoxia showed increase of autophagy with increased hypoxia inducible factor-1α level, and conditioned medium (CM) derived from these cells showed increased levels of migration and tube formation of human umbilical vein endothelial cells (HUVECs) compared to non-primed MSCs-derived CM. Pretreatment with autophagy inhibitor 3-methyladenine or chloroquine prior to exposure of hypoxia resulted in reduction of migration and tube formation of HUVECs. CM obtained under hypoxic condition from MSCs in which autophagy activity was inhibited by ATG5 and ATG7 siRNA treatment also showed decrease of migration and tube formation of HUVECs. Accordingly, secretion levels of angiogenin and VEGF that were markedly increased upon hypoxia exposure was decreased by ATG5/7 knockdown. Therefore, it may be suggested that autophagy plays an important role in hypoxia-driven enhancement of paracrine effect of MSCs.


Assuntos
Autofagia , Células-Tronco Mesenquimais/patologia , Neovascularização Fisiológica , Proteínas Relacionadas à Autofagia/metabolismo , Hipóxia Celular , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , RNA Interferente Pequeno/metabolismo , Ribonuclease Pancreático/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Geleia de Wharton/citologia
8.
Oncotarget ; 9(11): 9951-9962, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29515782

RESUMO

The recombinant kringle domain of urokinase (UK1) has been shown to inhibit angiogenesis and brain tumor growth in vivo. To avoid limitations in application due to mass production of recombinant protein, we attempted to develop a novel peptide inhibitor from UK1 sequence consisting of 83 amino acids that contains α-helices, loops and ß-sheets. We dissected UK1 sequence to seven peptides based on structure and amino acid characteristics, and examined the anti-angiogenic activities for the constructed peptides. Among the tested peptides, UP-7 most potently inhibited the proliferation and migration of endothelial cells (ECs) in vitro, and also potently inhibited in vivo angiogenesis in the mouse matrigel plug assay. Such anti-angiogenic activities were not exerted by the scrambled peptide. At molecular level, UP-7 inhibited growth factor-induced phosphorylation of FAK and ERK1/2. It also suppressed formation of stress fibers and focal adhesions and also inhibited the attachment and spreading of ECs onto immobilized fibronectin. In a lung cancer animal model xenografted with non-UP-7-sensitive NCI-H460 cells, systemic treatment of UP-7 effectively suppressed tumor growth through inhibition of angiogenesis. Interestingly, breast cancer cells such as LM-MDA-MB-231 cells were moderately sensitive to UP-7 in proliferation differently from other cancer cells. UP-7 also inhibited migration, invasion and FAK phosphorylation of LM-MDA-MB-231 cells. Accordingly, UP-7 potently inhibited lung metastatic growth of LM-MDA-MB-231 cells in an experimental metastasis model. Taken together, these results suggest that novel peptide UP-7 can be effectively used for treatment of breast cancer metastatic growth through inhibition of angiogenesis and invasion.

9.
J Cell Biochem ; 118(5): 1132-1143, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27618679

RESUMO

The recombinant protein TK1-2, which consists of two kringle domains of tissue-type plasminogen activator (t-PA), inhibits angiogenesis and tumor growth. ɪn this study, we examined the anti-angiogenic activities of peptides derived from kringle 2 domain of t-PA to identify the functional core sequence. Seven peptides were constructed from the kringle 2 sequence, based on the structure and characteristics of amino acid residues, and were analyzed for their inhibitory effects on endothelial cells (ECs). Among them, TP-7 (derived from a ß-sheet motif) potently inhibited proliferation, tube formation, and migration of ECs in a dose-dependent manner, whereas truncation of 3-9 amino acid residues from either N or C terminus of TP-7 abrogated its inhibitory effects on ECs. TP-7 also potently inhibited angiogenesis in a Matrigel plug assay in vivo. Moreover, TP-7 dose-dependently suppressed corneal neovascularization induced by an acute chemical burn in a rat model. At the molecular level, TP-7 inhibited VEGF- or bFGF-induced phosphorylation of FAK and ERK1/2 and drastically disrupted VEGF- or bFGF-induced formation of stress fibers and focal adhesion complexes. In addition, TP-7 markedly suppressed attachment and spreading of ECs on a collagen type I or fibronectin matrix. Adhesion of ECs to immobilized TP-7 increased dose-dependently, which was disrupted strongly by pretreatment with soluble TP-7 and slightly by an integrin α2ß1-blocking antibody. These results suggest that TP-7 is a potent anti-angiogenic peptide in part affecting the integrin α2ß1-dependent pathway and that it can be used for treatment of corneal neovascularization by targeting VEGF and non-VEGF pathways. J. Cell. Biochem. 118: 1132-1143, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neovascularização da Córnea/tratamento farmacológico , Células Endoteliais/citologia , Neovascularização Patológica/tratamento farmacológico , Peptídeos/administração & dosagem , Peptídeos/síntese química , Ativador de Plasminogênio Tecidual/química , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Kringles , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/farmacologia , Ratos , Fator A de Crescimento do Endotélio Vascular/farmacologia
10.
Int J Nanomedicine ; 10: 2261-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25848249

RESUMO

BACKGROUND: Silicon dioxide composites have been found to enhance the mechanical properties of scaffolds and to support growth of human adipose tissue-derived stem cells (hADSCs) both in vitro and in vivo. Silica (silicon dioxide alone) exists as differently sized particles when suspended in culture medium, but it is not clear whether particle size influences the beneficial effect of silicon dioxide on hADSCs. In this study, we examined the effect of different sized particles on growth and mitogen-activated protein kinase signaling in hADSCs. METHODS: Silica gel was prepared by a chemical reaction using hydrochloric acid and sodium silicate, washed, sterilized, and suspended in serum-free culture medium for 48 hours, and then sequentially filtered through a 0.22 µm filter (filtrate containing nanoparticles smaller than 220 nm; silica NPs). hADSCs were incubated with silica NPs or 3 µm silica microparticles (MPs), examined by transmission electron microscopy, and assayed for cell proliferation, apoptosis, and mitogen-activated protein kinase signaling. RESULTS: Eighty-nine percent of the silica NPs were around 50-120 nm in size. When hADSCs were treated with the study particles, silica NPs were observed in endocytosed vacuoles in the cytosol of hADSCs, but silica MPs showed no cell entry. Silica NPs increased the proliferation of hADSCs, but silica MPs had no significant effect in this regard. Instead, silica MPs induced slight apoptosis. Silica NPs increased phosphorylation of extracellular signal-related kinase (ERK)1/2, while silica MPs increased phosphorylation of p38. Silica NPs had no effect on phosphorylation of Janus kinase or p38. Pretreatment with PD98059, a MEK inhibitor, prevented the ERK1/2 phosphorylation and proliferation induced by silica NPs. CONCLUSION: Scaffolds containing silicon dioxide for tissue engineering may enhance cell growth through ERK1/2 activation only when NPs around 50-120 nm in size are included, and single component silica-derived NPs could be useful for bioscaffolds in stem cell therapy.


Assuntos
Tecido Adiposo/citologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Nanopartículas , Dióxido de Silício/química , Células-Tronco/citologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Flavonoides/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases , Microscopia Eletrônica de Transmissão , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nanopartículas/química , Tamanho da Partícula , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Alicerces Teciduais
11.
Cancer Lett ; 360(2): 195-204, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25681668

RESUMO

Temozolomide (TMZ) is an alkylating agent used for the treatment of glioblastoma. The late autophagy inhibitor chloroquine (CQ) inhibits glioblastoma tumors in a p53-independent and p53-dependent manner. We addressed a possible beneficial effect of combination treatment with TMZ and CQ by examining the molecular and cellular mechanism of co-treatment. Combination treatment of U87 cell (wild type p53) with TMZ and CQ synergistically reduced cell proliferation and enhanced apoptosis, with increased sub-G1 hypodiploid cells and caspase activation. This effect was abolished by a pan-caspase inhibitor, Z-VAD-FMK. TMZ induced autophagy, and the addition of CQ further increased autophagic vacuoles. Inhibition of early stages of autophagy by Beclin 1 knockdown and 3-methyladenine pretreatment prevented the enhanced effect of the combination treatment. The combination treatment also upregulated p53 and phospho-p53 levels, whereas p53 knockdown or overexpression of mutant p53 abolished the combination effect. In contrast, combination therapy had no enhanced effect on U373 cell (mutant p53) proliferation and apoptosis within 3 d, although TMZ induced autophagy and co-treatment with CQ increased autophagic vacuole accumulation. However, long term combination treatment for 9-10 d effectively decreased clonal and cellular growth with increased G2-M arrest. This effect was also abolished by Beclin 1 knockdown. Our data support the beneficial effect of combination treatment with TMZ and CQ in glioma via differential autophagy-associated mechanisms, depending on p53 status.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cloroquina/farmacologia , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cloroquina/administração & dosagem , Dacarbazina/administração & dosagem , Dacarbazina/farmacologia , Sinergismo Farmacológico , Glioblastoma/patologia , Humanos , Temozolomida
12.
J Cell Biochem ; 116(2): 310-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25185536

RESUMO

Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and to secrete paracrine factors for neuroprotection and regeneration. Previously, Rho-kinase inhibitors have been reported to potentiate differentiation of rodent bone marrow MSCs into neuron-like cells induced by CoCl2 (HIF-1α activation-mimicking agent). Here, a strategy of priming MSCs with fasudil, a Rho-kinase inhibitor, was investigated using Wharton's jelly-derived MSCs (WJ-MSCs) to improve recovery in a rat model of intracranial hemorrhage (ICH). In vitro culture of WJ-MSCs by co-treatment with fasudil (30 µM) and CoCl2 provoked morphological changes of WJ-MSCs into neuron-like cells and increased the expression of neuronal markers. Assessment of the secretion profiles showed that fasudil (30 µM) specifically increased glial cell line-derived neurotrophic factor (GDNF) among the secreted proteins at the transcription and secretion levels. For in vivo experiments, WJ-MSCs primed with fasudil (10 µM, exposure for 6 h) were transplanted into ICH rats with HIF-1α upregulation 1 week after injury, and neurological function was assessed via rotarod and limb placement tests for 7 weeks after transplantation. The group with WJ-MSCs primed with fasudil showed improved functional performance compared with the non-primed group. Accordingly, the primed group showed stronger expression of GDNF and higher levels of microtubule-associated protein 2 and neurofilament-H positive-grafted cells in the ICH lesion 3 weeks after transplantation compared with the non-primed group. Therefore, this work suggests that priming WJ-MSCs with fasudil is a possible application for enhanced cell therapy in stroke, with additional beneficial effect of up-regulation of GDNF.


Assuntos
Hemorragia Cerebral/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Geleia de Wharton/citologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Hemorragia Cerebral/fisiopatologia , Cobalto/farmacologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Quinases Associadas a rho/metabolismo
13.
Biomol Ther (Seoul) ; 21(6): 447-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24404335

RESUMO

Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent CoCl2. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus CoCl2 conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus CoCl2. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus CoCl2 upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.

14.
Int J Biochem Cell Biol ; 45(3): 560-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23246593

RESUMO

Mesenchymal stromal/stem cells derived from human Wharton's jelly (WJ-MSC) have emerged as a favorable source for autologous and allogenic cell therapy. Here, we characterized the proangiogenic features of WJ-MSCs and examined their ability to form functional vessels in in vivo models. First, we examined whether WJ-MSCs express endothelial and smooth muscle cell specific markers after culture in endothelial growth media. WJ-MSCs expressed an endothelial specific marker, VEGFR1, at mRNA and protein levels, but did not express other specific markers (VEGFR2, Tie2, vWF, CD31, and VE-cadherin). Rather, WJ-MSCs expressed smooth muscle cell specific markers, α-SMA, PDGFR-ß and calponin, and were unable to form tube-like structures with lumen on Matrigel. WJ-MSCs secreted growth factors including angiogenin, IGFBP-3, MCP-1, and IL-8, which stimulated endothelial proliferation, migration, and tube formation. When WJ-MSCs suspended in Matrigel were implanted into nude mice, it led to formation of functional vessels containing erythrocytes after 7 days. However, implantation of endothelial cell-suspended Matrigel resulted in no perfused vessels. The implanted WJ-MSCs were stained positively for calponin or PDGFR-ß and were located adjacent to the lining of mouse endothelial cells that were stained with labeled BS-lectin B4. In a murine hindlimb ischemia model, the transplantation of MSCs (5×10(5)cells) into the ischemic limbs improved perfusion recovery and neovascularization of the limbs compared to control group. Therefore, the results suggest that WJ-MSCs promote neovascularization and perfusion by secreting paracrine factors and by functioning as perivascular precursor cells, and that WJ-MSCs can be used efficiently for cell therapy of ischemic disease.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Animais , Biomarcadores/metabolismo , Vasos Sanguíneos/citologia , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Células Endoteliais/citologia , Extremidades/patologia , Extremidades/transplante , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo
15.
Biosci Biotechnol Biochem ; 76(1): 172-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22232255

RESUMO

Endothelial progenitor cells (EPCs) are applied in the treatment of ischemic diseases. In ex vivo culture of human cord-blood derived EPCs, H1152, (S)-(+)-2-methyl-1-[(4-methyl-5-iso-quinolinyl) sulfonyl]-homopiperazine, markedly increased the number of EPCs. It also induced EPC migration, stimulated the phosphorylation of AKT, and reduced the expression of p27 in the EPCs. Thus H1152 can be used effectively in ex vivo expansion of EPCs.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Movimento Celular/efeitos dos fármacos , Células Endoteliais/citologia , Inibidores de Proteínas Quinases/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Contagem de Células , Humanos , Células-Tronco/metabolismo
16.
IUBMB Life ; 64(3): 259-65, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22252975

RESUMO

The recombinant kringle domain (UK1) of urokinase plasminogen activator was previously reported to exert antiangiogenic activity against Vascular Endothelial Growth Factor (VEGF)-induced angiogenesis in both in vitro and in vivo models. In this study, we explored the molecular signaling mechanisms involved in the antiangiogenic activity of UK1 by examining VEGF signaling proteins. VEGF165 stimulates the phosphorylation of VEGF signaling molecules, and pretreatment with UK1 blocked VEGF-induced signal transduction associated with proliferation, survival, and migration. UK1 also suppressed VEGF165-induced activation of MMP-2. Moreover, UK1 suppressed the phosphorylation and activation of VEGFR2 in VEGF-stimulated human umbilical cord vein endothelial cells (HUVECs) by blocking the dimerization of VEGFR2. Overall, our findings suggest that UK1 inhibits VEGF-induced proliferation, migration, and matrix metalloproteinase activity of HUVECs by suppressing VEGFR2 dimerization and subsequent angiogenic signals.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Indutores da Angiogênese , Western Blotting , Movimento Celular , Proliferação de Células , Células Cultivadas , Dimerização , Ensaio de Imunoadsorção Enzimática , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Kringles , Metaloproteinase 2 da Matriz/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
17.
Int J Mol Med ; 28(3): 357-63, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21567077

RESUMO

Rho kinase (ROCK) has been implicated in the regulation of vascular tone, endothelial dysfunction, inflammation and remodeling. Endothelial progenitor cells (EPC) have been proven to have the efficacy of therapeutic neovascularization in ischemia. However, the scarcity of EPCs limits cell therapy. Using an in vitro EPC culture assay, Y27632 was found to increase the number of adherent EPCs. In this study, we investigated the effect of fasudil, another ROCK inhibitor being used in the clinic, on EPC number and examined whether EPCs expanded by fasudil are functional in vitro and in vivo. In ex vivo cultures of EPCs, fasudil effectively increased the number of ac-LDL/UEA-1 positive cells as well as adherent cells, in contrast to H89, a less selective ROCK inhibitor. Fasudil also increased EPC numbers in culture up to 10 µM, in a dose-dependent manner. When EPCs expanded with fasudil were examined for the migratory activity toward stromal cell-derived factor-1 and vascular endothelial growth factor, these cells retained functional properties in migration, albeit with some decrease. Fasudil-cultured EPCs labeled with PKH26 showed an activity similar to non-treated EPCs for cellular adhesion into an endothelial cell (EC) monolayer and incorporation into capillary-like structures formed by ECs. Finally, when EPCs cultured with fasudil (106 cells/mouse) were injected into ischemic limbs, these cells showed a blood flow recovery at a level comparable to non-treated control EPCs and increased neovascularization. Therefore, these data suggest that the ROCK inhibitor fasudil can provide a beneficial effect in the treatment of ischemic diseases by increasing EPC numbers.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Células Endoteliais/citologia , Células-Tronco/citologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Quimiocina CXCL12/metabolismo , Células Endoteliais/metabolismo , Membro Posterior/metabolismo , Humanos , Isquemia/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
FASEB J ; 25(1): 159-69, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20852063

RESUMO

Endothelial progenitor cells (EPCs) have been shown to have therapeutic potential in ischemic disease. However, the number of EPCs for cell therapy is limited. In this study, instead of the typical adherent culture method, we investigated a more efficient, clinically applicable nonadhesive expansion method for early EPCs using cord blood-derived cells to overcome rapid cellular senescence. After a suspension culture of isolated CD34(+) cells in serum-free medium containing each cytokine combination was maintained for 9 d, the number of expanded functional EPCs was assessed by an adherent culture assay. Compared to mononuclear cells, the CD34(+) fraction was superior in its expansion of functional EPCs that could differentiate into acLDL/UEA-1(+) cells without significant cellular senescence, whereas the CD34(-) fraction showed no EPC expansion. Among the cytokine combinations tested for the CD34(+) fraction, a combination (SFIb) consisting of stem cell factor (SCF), FMS-like tyrosine kinase 3 ligand, interleukin-3, and basic fibroblast growth factor resulted in a reproducible 64- to 1468-fold EPC expansion from various cord blood origins. Interestingly, the SFIb combination displayed markedly increased EPC expansion (2.43-fold), with a higher percentage of CD34(+) cells (2.17-fold), undifferentiated blasts (2.38-fold) and CXCR4(+) cells (1.68-fold) compared to another cytokine combination (SCF, thrombopoietin, and granulocyte colony-stimulating factor), although the two cytokine combinations had a similar level of total mononucleated cell expansion (∼ 10% difference). Accordingly, the cells expanded in the SFIb combination were more effective in recovery of blood flow and neovascularization in hind-limb ischemia in vivo. Taken together, these results suggest that the nonadhesive serum-free culture conditions of the CD34(+) fraction provide an effective EPC expansion method for cell therapy, and an expansion condition leading to high percentages of CD34(+) cells and blasts is likely important in EPC expansion.


Assuntos
Antígenos CD34/análise , Proliferação de Células , Células Endoteliais/citologia , Células-Tronco/citologia , Animais , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/transplante , Sangue Fetal/citologia , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/cirurgia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Fisiológica , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Fluxo Sanguíneo Regional , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Fatores de Tempo
19.
Exp Ther Med ; 2(2): 343-348, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22977508

RESUMO

Metronomic chemotherapy is a continuous low-dose administration of chemotherapeutic agents to minimize toxicity and target tumor-associated endothelial cells. This therapy is beneficial to anti-angiogenic efficacy which is linked to the inhibition of tumor growth. In the present study, we compared the anti-angiogenicity of temozolomide in human umbilical vein endothelial cells (HUVECs) between conventional and metronomic treatment. Metronomic treatment of temozolomide (TMZ) (6.25 and 12.5 µM) showed increased inhibition of the proliferation of HUVECs compared to an equivalent conventional treatment of TMZ. The differential effects between conventional and metronomic treatment of TMZ were also noted in cell migration and angiogenic tube formation. Notably, the expression level of O(6)-methylguanine-DNA methyltransferase (MGMT) was markedly reduced in the HUVECs treated with metronomic TMZ (12.5 and 25 µM) compared to cells treated with conventional treatment of TMZ. Accordingly, HUVECs treated with metronomic treatment of TMZ were more sensitive to TMZ treatment. Taken together, metronomic chemotherapy with TMZ enhances the inhibition of angiogenesis accompanied by the down-regulation of MGMT expression in endothelial cells when compared to conventional chemotherapy.

20.
Oncol Lett ; 2(1): 115-121, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22870139

RESUMO

The alkylating agent temozolomide (TMZ) is an effective drug used for the treatment of malignant gliomas. However, tumor relapse combined with the development of drug resistance remains a significant problem. To clarify the mechanism of the resistance of glioma cells to TMZ chemotherapy, TMZ-resistant glioma cell lines (TR cells) were generated using U373 and U251 human glioma cells, and TMZ-resistance was confirmed via viability and apoptosis assays. The TMZ-resistance of TR cells was not associated with the TMZ-resistance molecule O(6)-methylguanine-DNA-methyltransferase. Notably, the expression level of signal transducers and activators of transcription 3 (STAT3) and serine 727-phosphorylated STAT3 (pSTAT3-Ser727) was highly increased in TR cells, while that of 705-phosphorylated STAT3 (pSTAT3-Tyr705) was decreased. The inhibition of STAT3 expression by small interfering RNA enhanced TR cell TMZ sensitivity. These results suggest that STAT3 contributes to TMZ-resistance in gliomas and is a potential target for the reversal of TMZ-resistance in patients with a recurrent glioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...